Development of anisotropic mobility during two-phase flow
نویسنده
چکیده
S U M M A R Y This paper investigates the development of anisotropic frictional resistance and mobility as a function of an applied stress in a partially molten aggregate. Shapes of initially spherical melt pockets and cylindrical melt tubules are calculated as a function of the applied stress using a perturbation analysis. The applied stress excites a local flow within the melt units (tubules or pockets) rendering their initially circular average cross-section elliptical. Average aspect ratio of tubule cross-sections predicted by the perturbation analysis is compared with the results from laboratory experiments. The increase in the average aspect ratio is related to an increase in the volume fraction of melt films. A derivation for the effective resistance and mobility tensors as a function of the applied stress is presented. The anisotropy of resistance and mobility increases continuously with the applied stress in a non-linear fashion. In the upper limit, the anisotropy of the mobility tensor can increase by a factor of 10 under an applied stress of 14 MPa.
منابع مشابه
Experimental study and numerical simulation of three dimensional two phase impinging jet flow using anisotropic turbulence model
Hydrodynamic of a turbulent impinging jet on a flat plate has been studied experimentally and numerically. Experiments were conducted for the Reynolds number range of 72000 to 102000 and a fixed jet-to-plate dimensionless distance of H/d=3.5. Based on the experimental setup, a multi-phase numerical model was simulated to predict flow properties of impinging jets using two turbulent models. Mesh...
متن کاملFinite element simulation of pyroplastic deformation, anisotropic shrinkage and heterogeneous densification for ceramic materials during liquid phase sintering process
Pyroplastic deformation is a distortion of the ceramic shape during the sintering process. It occurs because the flow of the vitreous phase at high temperature and the applied stress due to the weight of the product during sintering process. The aim of this paper deals with describing a numerical-experimental method to evaluate the pyroplastic deformation, to predict the anisotropic shrinkage a...
متن کاملEvaluation of Heterogeneous Densification, Anisotropic Shrinkage and Rheological Behavior of Ceramic Materials during Liquid Phase Sintering by Numerical-Experimental Procedure
The effective shear and bulk viscosity, as well as dynamic viscosity, describe the rheological properties of the ceramic body during the liquid phase sintering process. The rheological parameters depend on the physical and thermo-mechanical characteristics of the material such as relative density, temperature, grain size, diffusion coefficient, and activation energy. Thermal behavior of the cer...
متن کاملKernels with prescribed surface tension & mobility for threshold dynamics schemes
We show how to construct a convolution kernel that has a desired anisotropic surface tension and desired anisotropic mobility to be used in threshold dynamics schemes for simulating weighted motion by mean curvature of interfaces, including networks of them, in both two and three dimensions. Moreover, we discuss necessary and sufficient conditions for the positivity of the kernel which, in the ...
متن کاملA Novel Approach to Measuring Water and Oil Relative Permeabilities in Two-phase Fluid Flow in Porous Media
In this study, direct laboratory measurements of unsteady-state imbibition test are used in a new approach to obtain relative permeability curves with no predetermined functionality assumptions. Four equations of continuity, Darcy’s law, cumulative oil production, and water fractional flow are employed in combination together under certain assumptions to present the new approach which interpret...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011